您現在正在瀏覽 :| 主頁>教師園地>教學科研>正文

教育部最新頒布的《中等職業學校數學教學大綱》

字體: 來源:教研室 作者:教研室 責任編輯: 安鳴章    時間:2010-10-08 點擊:

教育部最新頒布的《中等職業學校數學教學大綱》

一、課程性質與任務

數學是研究空間形式和數量關系的科學,是科學和技術的基礎,是人類文化的重要組成部分。

數學課程是中等職業學校學生必修的一門公共基礎課。本課程的任務是:使學生掌握必要的數學基礎知識,具備必需的相關技能與能力,為學習專業知識、掌握職業技能、繼續學習和終身發展奠定基礎。

二、課程教學目標

1. 在九年義務教育基礎上,使學生進一步學習并掌握職業崗位和生活中所必要的數學基礎知識。

2. 培養學生的計算技能、計算工具使用技能和數據處理技能,培養學生的觀察能力、空間想象能力、分析與解決問題能力和數學思維能力。

3. 引導學生逐步養成良好的學習習慣、實踐意識、創新意識和實事求是的科學態度,提高學生就業能力與創業能力。

三、教學內容結構

本課程的教學內容由基礎模塊、職業模塊和拓展模塊三個部分構成。

1. 基礎模塊是各專業學生必修的基礎性內容和應達到的基本要求,教學時數為128學時。

2. 職業模塊是適應學生學習相關專業需要的限定選修內容,各學校根據實際情況進行選擇和安排教學,教學時數為32~64學時。

3. 拓展模塊是滿足學生個性發展和繼續學習需要的任意選修內容,教學時數不做統一規定。

四、教學內容與要求

(一)本大綱教學要求用語的表述

1. 認知要求(分為三個層次)

了解:初步知道知識的含義及其簡單應用。

理解:懂得知識的概念和規律(定義、定理、法則等)以及與其他相關知識的聯系。

掌握:能夠應用知識的概念、定義、定理、法則去解決一些問題。

2. 技能與能力培養要求(分為三項技能與四項能力)

計算技能:根據法則、公式,或按照一定的操作步驟,正確地進行運算求解。

計算工具使用技能:正確使用科學型計算器及常用的數學工具軟件。

數據處理技能:按要求對數據(數據表格)進行處理并提取有關信息。

觀察能力:根據數據趨勢,數量關系或圖形、圖示,描述其規律。

空間想象能力:依據文字、語言描述,或較簡單的幾何體及其組合,想象相應的空間圖形;能夠在基本圖形中找出基本元素及其位置關系,或根據條件畫出圖形。

分析與解決問題能力:能對工作和生活中的簡單數學相關問題,作出分析并運用適當的數學方法予以解決。

數學思維能力:依據所學的數學知識,運用類比、歸納、綜合等方法,對數學及其應用問題能進行有條理的思考、判斷、推理和求解;針對不同的問題(或需求),會選擇合適的模型(模式)。

(二)教學內容與要求

1. 基礎模塊(128學時)

1單元 集合(10學時)

知識內容

認知要求

說 明

了解

理解

掌握

集合、元素及其關系,空集

 

 

1)要從實例引進集合的概念、集合之間的關系及運算

2)通過集合語言的學習與運用,培養學生的數學思維能力

3)重點是集合的表示和集合之間的關系

集合的表示法

 

 

集合之間的關系(子集、真子集、相等)

 

 

集合的運算(交、并、補)

 

 

充要條件

 

 

2單元 不等式(8學時)

知識內容

認知要求

說 明

了解

理解

掌握

不等式的基本性質

 

 

1)要注意與初中不等式內容的銜接,在復習的基礎上進行新知識的教學

2)通過解一元二次不等式的教學,培養學生計算技能

3)重點是一元二次不等式的解法

區間的概念

 

 

一元二次不等式

 

 

含絕對值的不等式

ax+bc(或>c)]

 

 

 

3單元 函數(12學時)

知識內容

認知要求

說 明

了解

理解

掌握

函數的概念

 

 

1)要結合生活及職業崗位的實例進一步理解函數的概念,引入函數的單調性及奇偶性等知識

2)通過函數圖像及其性質的研究,培養學生觀察能力,分析與解決問題能力和數據處理技能

3)重點是函數的概念,函數的圖像及函數的應用

函數的三種表示法

 

 

函數的單調性

 

 

函數的奇偶性

 

 

函數的實際應用舉例

 

 

 

4單元 指數函數與對數函數(12學時)

知識內容

認知要求

說 明

了解

理解

掌握

有理數指數冪

 

 

1)有理數指數冪要與整數指數冪知識銜接

2)通過冪與對數的計算,培養學生計算工具使用技能;結合生活、生產實例,講授指數函數模型,培養學生數學思維能力和分析與解決問題能力

3)重點是指數函數與對數函數的性質及應用

實數指數冪及其運算法則

 

 

冪函數舉例

 

 

指數函數的圖像和性質

 

 

對數的概念(含常用對數、自然對數)

 

 

利用計算器求對數值

lg N,ln N,logaN

 

 

積、商、冪的對數

 

 

對數函數的圖像和性質

 

 

指數函數與對數函數的實際應用舉例

 

 

5單元 三角函數(18學時)

知識內容

認知要求

說 明

了解

理解

掌握

角的概念推廣

 

 

1)通過周期現象推廣角的概念;任意角的正弦函數、余弦函數和正切函數的講授要與銳角三角函數相銜接

2)通過本單元教學,培養學生的觀察能力,計算技能和計算工具使用技能

3)重點是三角函數的概念、同角三角函數的基本關系式、正弦函數的圖像及性質

弧度制

 

 

任意角的正弦函數、余弦函數和正切函數

 

 

利用計算器求三角函數值

 

 

同角三角函數基本關系式:sin2α+cos2α=1、tan α=

sin α

 

cos α

 

誘導公式:2kπ+α、、π±α的正弦、余弦及正切公式

 

 

正弦函數的圖像和性質

 

 

余弦函數的圖像和性質

 

 

利用計算器求角度

 

 

已知三角函數值求指定范圍內的角

 

 

 

6單元 數列(10學時)

知識內容

認知要求

說 明

了解

理解

掌握

數列的概念

 

 

1)數列概念的引入、等差數列、等比數列的學習都要結合生活實例來進行

2)通過等差數列與等比數列的教學,培養計算工具使用技能,數據處理技能和分析與解決問題能力

3)重點是等差數列與等比數列的通項公式,前n項和公式

等差數列的定義,通項公式,前n項和公式

 

 

等比數列的定義,通項公式,前n項和公式

 

 

數列實際應用舉例

 

 

7單元 平面向量(矢量)(10學時)

知識內容

認知要求

說 明

了解

理解

掌握

平面向量的概念

 

 

1)平面向量概念的引入要結合生活、生產的實例進行

2)通過平面向量的教學,培養學生計算技能,數據處理技能和數學思維能力

3)重點是平面向量的運算及其坐標表示

平面向量的加、減、數乘運算

 

 

平面向量的坐標表示

 

 

平面向量的內積

 

 

 

8單元 直線和圓的方程(18學時)

知識內容

認知要求

說 明

了解

理解

掌握

兩點間距離公式及中點公式

 

 

1)要加強本單元知識與工程問題的聯系,使學生體驗解析幾何的應用

2)通過本單元教學,培養學生數學思維能力和分析與解決問題能力

3)重點是直線的點斜式方程和圓的標準方程,用坐標法解決直線、圓的相關問題

直線的傾斜角與斜率

 

 

直線的點斜式和斜截式方程

 

 

直線的一般式方程

 

 

兩條相交直線的交點

 

 

兩條直線平行的條件

 

 

兩條直線垂直的條件

 

 

點到直線的距離公式

 

 

圓的方程

 

 

直線與圓的位置關系

 

 

直線的方程與圓的方程應用舉例

 

 

 

9單元 立體幾何(14學時)

知識內容

認知要求

說 明

了解

理解

掌握

平面的基本性質

 

 

1)通過觀察實物和模型,歸納出直線、平面位置關系的判定與性質

2)通過本單元教學,培養學生的空間想象能力,數學思維能力和計算工具使用技能

3)重點是對直線、平面位置關系的判定;柱、錐、球及其簡單組合體的結構特征及面積與體積的計算

直線與直線、直線與平面、平面與平面平行的判定與性質

 

 

直線與直線、直線與平面、平面與平面所成的角

 

 

直線與直線、直線與平面、平面與平面垂直的判定與性質

 

 

 

柱、錐、球及其簡單組合體的結構特征及面積、體積的計算

 

 

10單元 概率與統計初步(16學時)

知識內容

認知要求

說 明

了解

理解

掌握

分類、分步計數原理

 

 

1)教學中應注重知識講授與試驗、實例分析相結合,使學生在解決問題中掌握知識

2)在本單元的教學中要注意使用計算器或計算機軟件,培養學生的計算工具使用技能,數據處理技能和分析與解決問題能力

3)重點是概率、總體與樣本的概念,用樣本均值估計總體均值,用樣本標準差估計總體標準差,及其運用概率、統計初步知識解決簡單的實際問題

隨機事件和概率

 

 

概率的簡單性質

 

 

直方圖與頻率分布

 

 

總體與樣本

 

 

抽樣方法

 

 

總體均值、標準差;

用樣本均值、標準差估計總體均值、標準差

 

 

一元線性回歸

 

 

 

2. 職業模塊

1單元 三角計算及其應用(16學時)

知識內容

認知要求

說 明

了解

理解

掌握

兩角和的正弦、余弦公式

 

 

1)本單元知識是相關專業課程學習的基礎,如機械加工專業的金屬加工與實訓課程;要結合生產案例進行講授

2)通過本單元教學,培養學生的計算技能,計算工具使用技能和分析與解決問題能力

3)重點是和角公式、正弦型函數和余弦定理的應用

二倍角公式

 

 

正弦型函數y=Asinωx+φ

 

 

正弦定理、余弦定理

 

 

生產、生活中的三角計算及應用舉例

 

 

 

2單元 坐標變換與參數方程(12學時)

知識內容

認知要求

說 明

了解

理解

掌握

坐標軸平移

 

 

1)本單元知識是相關專業課程學習的基礎,如數控專業的數控機床(車床、銑床)操作課程;要結合生產案例進行講授

2)通過本單元教學,培養學生的計算技能,計算工具使用技能和分析與解決問題能力

3)重點是坐標變換及參數方程在生產中的應用

坐標軸旋轉

 

 

參數方程

 

 

常用幾何曲線表

 

 

坐標變換及參數方程的應用舉例

 

 

3單元 復數及其應用(10學時)

知識內容

認知要求

說 明

了解

理解

掌握

復數的概念

 

 

1)本單元知識是相關專業課程學習的基礎,如自動化專業的電工基礎課程

2)通過本單元教學,理解專業課程的相關概念描述與計算,培養學生的計算工具使用技能

3)重點是復數的概念與應用

復數的運算

 

 

復數的幾何意義

 

 

復數應用舉例

 

 

 

4單元 邏輯代數初步(16學時)

知識內容

認知要求

說 明

了解

理解

掌握

二進位制

 

 

1)本單元知識是相關專業課程學習的基礎,如自動化專業的數字電路課程;要結合學生的職業背景進行講授

2)通過本單元教學,提高學生的數學思維能力和分析與解決問題能力

3)重點是邏輯式與真值表,邏輯代數的應用

邏輯變量與運算(且、或、非)

 

 

邏輯式與真值表

 

 

邏輯運算律和公式法化簡邏輯式

 

 

邏輯函數的最小項表達式

 

 

卡諾圖和圖解法化簡邏輯式

 

 

邏輯代數的應用舉例

 

 

 

5單元算法與程序框圖(16學時)

知識內容

認知要求

說 明

了解

理解

掌握

算法的概念

 

 

1)本單元知識是相關專業課程學習的基礎,如計算機應用專業的VB編程課程;要結合生活、生產或管理案例進行講授

2)通過本單元教學,提高學生的數學思維能力和分析與解決問題能力

3)重點是用程序框圖來描述算法中的邏輯處理過程

命題邏輯

 

 

條件判斷

 

 

程序框圖的基本圖例

 

 

數值計算案例的框圖表示

 

 

字符運算案例的框圖表示

 

 

算法與程序框圖應用舉例

 

 

6單元 數據表格信息處理(10學時)

知識內容

認知要求

說 明

了解

理解

掌握

數組、數據表格的概念

 

 

1)本單元知識是相關專業課程學習的基礎,如服務類專業的市場營銷課程;要結合管理案例進行講授

2)在本單元的教學中要重視計算器或計算機軟件的使用,培養學生的計算工具使用技能,數據處理技能,觀察能力和分析與解決問題能力

3)重點是數組的運算和數據表格的應用

數組的運算

 

 

數據表格的圖示

 

 

數據表格的應用舉例

 

 

用軟件處理數據表格

 

 

 

7單元 編制計劃的原理與方法(14學時)

知識內容

認知要求

說 明

了解

理解

掌握

編制計劃的有關概念

 

 

1)本單元知識是相關專業課程學習的基礎,如服務類專業的企業管理課程;要通過實例,讓學生了解用數學知識編制計劃的方法

2)通過本單元教學,培養學生計算技能,計算工具使用技能,數學思維能力和分析與解決問題能力

3)重點是關鍵路徑法,網絡圖

關鍵路徑法

 

 

橫道圖

 

 

網絡圖

 

 

計劃的調整與優化

 

 

 

8單元 線性規劃初步(14學時)

知識內容

認知要求

說 明

了解

理解

掌握

線性規劃問題的有關概念

 

 

1)本單元知識是相關專業課程學習的基礎,如服務類專業的企業管理課程

2)通過本單元教學,了解用數學知識進行規劃的方法,培養學生的計算技能,計算工具使用技能和分析與解決問題能力

3)重點是線性規劃問題的有關概念與應用

圖解法

 

 

表格法

 

 

線性規劃問題的應用舉例

 

 

用計算機軟件解線性規劃問題

 

 

3. 拓展模塊

1)各學校根據學生的實際情況和繼續學習的需要,可以在基礎模塊的基礎上,進一步選擇安排以下教學內容,也可自行補充其他內容。

1單元 三角公式及應用

知識內容

認知要求

說 明

了解

理解

掌握

和角公式

 

 

1)可以用向量知識介紹和角公式

2)通過本單元教學,培養學生的計算技能、數學思維能力和分析與解決問題能力

3)重點是和角公式,余弦定理

二倍角公式

 

 

正弦定理,余弦定理

 

 

正弦型函數

 

 

注:如果已學過了職業模塊中三角計算及其應用單元,可以不學第1單元。

2單元 橢圓、雙曲線、拋物線

知識內容

認知要求

說 明

了解

理解

掌握

橢圓的標準方程和性質

 

 

1)要結合科技、生活中的實例來引入概念

2)通過本單元教學,培養學生的計算技能和數學思維能力

3)重點是橢圓的標準方程和性質

雙曲線的標準方程和性質

 

 

拋物線的標準方程和性質

 

 

 

3單元 概率與統計

知識內容

認知要求

說 明

了解

理解

掌握

排列、組合

 

 

1)要結合生活、生產的實例來介紹相關知識

2)通過本單元教學,培養學生計算工具使用技能、計算技能和數學思維能力

3)重點是二項分布,正態分布

二項式定理

 

 

離散型隨機變量及其分布

 

 

二項分布

 

 

正態分布

 

 

 

2)學校根據學生興趣和學校條件,可開展拓展性知識講座和相關活動。例如,舉辦數學在生活中的應用、數學在相關職業崗位上的應用、數學與文化、數學史等專題知識講座。

五、教學實施

(一)教學建議

1. 教學安排建議

在保障教學時數的基礎上,可以適當靈活地進行教學安排。下面提供兩個教學方案,供三年制學校參考。

方案1

基礎模塊在第一學年的兩個學期內完成。每周4學時,每學期為64學時(不含復習考試環節),共128學時(8學分)。

職業模塊在第二學年的第一學期內完成。每周24學時,共3264學時(24學分),需要數學知識較多的專業可以適當增加學時。

拓展模塊的學習由各學校自行安排,不做統一要求。

方案2

基礎模塊和職業模塊全部在第一學年的兩個學期內完成。每周56學時,每學期為8096學時(不含復習考試環節),共160192學時(1012學分)。需要數學知識較多的專業可以適當增加學時。

拓展模塊的教學由各學校自行安排,不做統一要求。

實施學分制的學校,按1618學時折合1學分計算。

2. 教學方法建議

教學方法的選擇要從中等職業學校學生的實際出發,要符合學生的認知心理特征,要關注學生數學學習興趣的激發與保持,學習信心的堅持與增強,鼓勵學生參與教學活動,包括思維參與和行為參與,引導學生主動學習。

教師要學習職業教育理論,提高自身業務水平;了解一些相關專業的知識,熟悉數學在相關專業課程中的應用,提升教學能力。

要根據不同的數學知識內容,結合實際地充分利用各種教學媒體,進行多種教學方法探索和試驗。

(二)教材編寫建議

教材的編寫應以本教學大綱為基本依據。

教材內容要注意與九年義務教育階段數學課程的銜接,做好知識的整合。

教材內容的選擇,要突出職業特色,貼近學生實際,貼近生活。素材的選取,要便于學生對數學的認識和理解,有利于學習興趣的提高。

教材內容的呈現形式要多樣化,要從學生的認知規律出發,展現數學的概念和結論的形成過程,體現從具體到抽象、特殊到一般的原則。要利用多種形式,圖文并茂、生動有趣地呈現知識素材。內容的表述要深入淺出、通俗易懂,具有科學性與可讀性。

職業模塊的內容,要以滿足專業課程學習的基本需求為目的,篩選出與專業實際應用結合緊密的,能被學生所接受的知識。

教材要有開放性和彈性。要考慮不同地區、不同專業的需要,在合理安排基本課程內容的基礎上,給地方、學校和教師留有開發的余地,也為學生留有選擇的空間,以滿足不同學生學習和發展的需要。

要為教師提供教學參考用書,幫助教師理解教材編寫的思路,更好地實施教學;要為學生提供學習指導用書,幫助學生鞏固、反思、檢測學習效果。

(三)現代教育技術的應用建議

教師應更新觀念,優化傳統的教學方法,充分發揮計算機、互聯網等現代媒體技術的優勢,重視現代教育技術與課程的整合,努力推進現代教育技術在職業教育教學中合理的應用。

數字化教學資源(如教學演示軟件、虛擬仿真軟件等)可作為輔助教學的工具。提倡在教學過程中,將數字化教學資源與各種教學要素和教學環節進行有機的結合,從而提高教學的效率和效果。

學校要為數學教師教學和學生學習提供豐富多樣的教學資源、教學工具和教學環境,以利于創建符合個性化學習及加強實踐技能培養的教學環境,推動教學模式和教學方法的改革。

六、考核與評價

考核與評價對數學的教與學有較強的導向作用。其目的不僅是為了考察教學結果的完成情況,更重要的是可以及時向教師和學生提供反饋信息,更有效地改進和完善教師的教學和學生的學習活動,激發學生的學習熱情,促進學生的發展。教學評價要注重診斷和指導,突出導向、激勵的功能。

考核與評價要充分考慮職業教育的特點和數學課程的教學目標,應該包括知識、技能與能力、態度三個方面。

要堅持終結性評價與過程性評價相結合,定量評價與定性評價相結合,教師評價與學生自評、互評相結合的原則,注重考核與評價方法的多樣性和針對性。過程性評價包括上課、完成作業、數學活動、平時考評等內容,終結性評價主要指期末數學考試。學期總成績可由過程性評價成績、期中和期末考試成績組成?己伺c評價應結合學生在學習過程中的變化和發展進行。

各地應根據本大綱教學要求、職業教育的特點和學生的實際情況,研究并制定數學課程考核評價體系和實施方案。

 

[審核人:張文勝]  轉載請注明出處   [添加到百度搜藏] [收藏到QQ書簽]
上一篇:教育部最新頒布的《中等職業學校體育與健康教學指導綱要》     下一篇:沒有了
最新評論共有 0 位網友發表了評論
查看所有評論
發表評論
評論內容:不能超過250字,需審核,請自覺遵守互聯網相關政策法規。
匿名評論
欧美一区二区三区久久综合